DDOS Attacks leveraging LDAP !

21382575392_223304551e_z
photo by Christiaan Colen

Yesterday, DDoS mitigation provider Corero Network Security disclosed a zero-day distributed denial of service attack (DDoS) technique, observed in the wild, that is capable of amplifying malicious traffic by a factor of as much as 55x. Several sites published the story as “Attackers are now abusing exposed LDAP servers to amplify DDoS attacks”.

 

According to Corero, the attacks exploited the Lightweight Directory Access Protocol (LDAP), but reading the details of the press release, it appears that the attackers were using Connectionless LDAP services (CLDAP) .

In this case, the attacker sends a simple query to a vulnerable reflector supporting the Connectionless LDAP service (CLDAP) and using address spoofing makes it appear to originate from the intended victim. The CLDAP service responds to the spoofed address, sending unwanted network traffic to the attacker’s intended target.

Connectionless LDAP  is a very old technical specification, published in 1995 as RFC 1798.  In 2003, this specification was obsoleted by RFC 3352 and moved to historical status. One of the main reason for obsoleting the proposed standard was its insufficient security capabilities.

OpenDJ, the open source LDAP Directory Services in Java, has never supported CLDAP and thus cannot be used in such attack. So, if you are a  ForgeRock customer, you should not worry about this kind of attack. But if you’re running a legacy product, that has CLDAP enabled by default, it is probably time to think about moving to a more recent and up to date directory service, such as OpenDJ.

 

Managing OpenDJ with REST

OpenDJ, the open source LDAP Directory Server, was the first to propose a native HTTP REST / JSON access to the data.

In the next major release, OpenDJ will be providing many enhancements to the REST interface, that I will describe in a series of posts. To start with, let’s talk about the new administrative interfaces added to manage the OpenDJ server.

When the HTTP access is enabled, OpenDJ creates by default 2 administrative endpoints: /admin/config and /admin/monitor.

/admin/config provides a read-write access to the configuration, with the same view and hierarchy of objects as the LDAP access. All of the operations that are possible with the dsconfig command, can be done over LDAP, and now REST.  As a matter of fact, the /admin/config API is automatically generated from the same XML description files that are used to generate the LDAP view and the dsconfig command line utilities. This means that any extension, plugin added to the server will also be exposed via REST without additional code.

screen-shot-2016-10-25-at-15-03-54

Above is an example of query of the /admin/config endpoint, querying for all  backends , done as a user who has the privilege to read the configuration. A similar query done with a user that doesn’t have the config-read privilege does fail as below:

$ curl -s -u user.2 http://localhost:8080/admin/config/backends/userRoot
Enter host password for user 'user.2': 
{
 "message" : "Insufficient Access Rights: You do not
have sufficient privileges to perform search operations
in the Directory Server configuration",
 "code" : 403,
 "reason" : "Forbidden"
}

/admin/monitor provides a read-only view on all of the OpenDJ monitoring information that was already accessible via LDAP under the "cn=Monitor" naming context, and JMX.

$ curl -s -u user.0 http://localhost:8080/admin/monitor/
Enter host password for user 'user.0':
{
 "_id" : "monitor",
 "upTime" : "0 days 2 hours 49 minutes 54 seconds",
 "currentConnections" : "1",
 "totalConnections" : "32",
 "currentTime" : "20161024103215Z",
 "startTime" : "20161024074220Z",
 "productName" : "OpenDJ Server",
 "_rev" : "00000000644a67b2",
 "maxConnections" : "3"
}

The /admin REST endpoints can be protected with different authorization mechanisms, from HTTP basic to OAuth2. And the whole endpoint can be disabled as well if needed using dsconfig.

These administrative REST endpoints can be tested with the OpenDJ nightly builds. They are also available to ForgeRock customers as part of our latest update of the ForgeRock Identity Platform.

More about OpenDJ support for JSON attribute values

In a previous post, I introduced the new JSON syntax, JSON query and matching rules that are delivered as part of the OpenDJ LDAP directory server. Today, I will give more insights on how to customise the syntax, tune the matching rules for smarter and more efficient indexing, and I will highlight some best practices with using the JSON syntax.

JSON Syntax Validation

When defining an attribute with a JSON syntax, the server will validate that the JSON value is compliant with JSON RFC.  OpenDJ offers a few options to relax some of the constraints of a valid JSON. To change the settings of the syntax, you must use dsconfig --advanced.

>>>> Configure the properties of the Core Schema

Property Value(s)
 ----------------------------------------------------------------------
 1) allow-attribute-types-with-no-sup-or-syntax true
 2) allow-zero-length-values-directory-string false
 3) disabled-matching-rule NONE
 4) disabled-syntax NONE
 5) enabled true
 6) java-class org.opends.server.schema.CoreSchemaProvider
 7) json-validation-policy strict
 8) strict-format-certificates true
 9) strict-format-country-string true
 10) strict-format-jpeg-photos false
 11) strict-format-telephone-numbers false
 12) strip-syntax-min-upper-bound-attribute-type-description false

?) help
 f) finish - apply any changes to the Core Schema
 c) cancel
 q) quit

Enter choice [f]: 7


>>>> Configuring the "json-validation-policy" property

Specifies the policy that will be used when validating JSON syntax values.

Do you want to modify the "json-validation-policy" property?

1) Keep the default value: strict
 2) Change it to the value: disabled
 3) Change it to the value: lenient

?) help
 q) quit

Enter choice [1]:

Strict is the default mode.

Disabled means that the server will not try to validate the content of a JSON value.

Lenient means that it will validate the JSON value, but tolerate comments, single quotes and unquoted control characters.

JSON Matching Rule and Indexing

Like any attribute in the OpenDJ server, attributes with a JSON syntax can be indexed.

$ dsconfig -h localhost -p 4444 \
  -D "cn=Directory Manager" -w secret12 -X -n \
 set-backend-index-prop \--backend-name userRoot \
 --index-name json --set index-type:equality

By default, the server actually indexes each field of all JSON values. If the values are large and complex, indexing will  result in many disk I/O, possibly impacting performances for write operations.

If you know which fields of the JSON values will be queried for by the client applications, you can optimise the index and specify the JSON fields that are indexed. This is by creating a new custom schema provider for the JSON query. You can choose to overwrite the default JSON query matching rules (as illustrated below), and this will affect all JSON attributes, or you can choose to create a new rule (with a new name and OID).

In the example below, the custom schema provider overwrites the default caseIgnoreJsonQueryMatch, and only indexes the JSON fields _id and name with its subfields.

$ dsconfig -h localhost -p 4444 \
  -D "cn=Directory Manager" -w secret12 -X -n \
 create-schema-provider --provider-name "Json Schema" \
 --type json-schema --set enabled:true \
 --set case-sensitive-strings:false \
 --set ignore-white-space:true \
 --set matching-rule-name:caseIgnoreJsonQueryMatch \
 --set matching-rule-oid:1.3.6.1.4.1.36733.2.1.4.1 \
 --set indexed-field:_id \
 --set "indexed-field:name/**" 

When you overwrite the default matching rule, or you define a new one, you need to rebuild the indexes for all attributes that are making use of it.

Best Practices

The support for JSON attributes in OpenDJ is very new, but yet, we can recommend how to best use them.

The first thing, is to use the JSON syntax for attributes that are single valued. Indexing is designed to associate values with entries. Because JSON query indexes are built for all fields of the JSON objects, an entry will be returned if a query matches all fields, even though they are in different objects.

The JSON syntax is handy to store complex JSON objects in a single attribute and query them, through any field. However, the larger the values, the  more impact on the directory server’s performances. As, by default, all JSON fields are indexed, the more fields, the more expensive will be indexing. Also, because the JSON objects are LDAP attributes, the only way to change a value is to replace the value with a new one (or delete the value and add a new one, which are operations with even more bytes). There is no patch operation on the value. Finally, OpenDJ stores all attributes of an entry in a single database record. So any change in the entry itself will require to write the whole entry again.

As we’ve seen above, OpenDJ proposes a way to customise the JSON queries and the JSON fields that are indexed. We suggest that you make use of this capability and optimise the indexing of JSON objects for the queries run by the client applications.

If you plan to store different kinds of JSON objects in an OpenDJ directory service, define different attributes with the JSON syntax, and use a custom JSON query per attribute. For example, lets assume you will have entries that are persons with an address attribute with a JSON syntax, and some other entries that represent OAuth2 tokens, and the token main attribute has a JSON syntax. You should define an address attribute and a token attribute, both with the JSON syntax, but their specific matching rules, like below.

attributeTypes: ( 1.3.6.1.4.1.36733.2.1.1.999 NAME 'address'
  SYNTAX 1.3.6.1.4.1.36733.2.1.3.1
  EQUALITY caseIgnoreJsonAddressQueryMatch SINGLE-VALUE )

attributeTypes: ( 1.3.6.1.4.1.36733.2.1.1.999 NAME 'token'
  SYNTAX 1.3.6.1.4.1.36733.2.1.3.1 
  EQUALITY caseIgnoreJsonTokenQueryMatch SINGLE-VALUE )

where the matching rules are defined as such:

$ dsconfig -h localhost -p 4444 \
  -D "cn=Directory Manager" -w secret12 -X -n \
 create-schema-provider \
 --provider-name "Address Json Schema" \
 --type json-schema --set enabled:true \
 --set case-sensitive-strings:false \
 --set ignore-white-space:true \
 --set matching-rule-name:caseIgnoreJsonAddressQueryMatch \
 --set matching-rule-oid:1.3.6.1.4.1.36733.2.1.4.998

and

$ dsconfig -h localhost -p 4444 \
  -D "cn=Directory Manager" -w secret12 -X -n \
 create-schema-provider \
 --provider-name "Token Json Schema" \
 --type json-schema --set enabled:true \
 --set case-sensitive-strings:false \
 --set ignore-white-space:true \
 --set matching-rule-name:caseIgnoreJsonTokenQueryMatch \
 --set matching-rule-oid:1.3.6.1.4.1.36733.2.1.4.999 \
 --set indexed-field:token_type \
 --set indexed-field:expires_at \
 --set indexed-field:access_token

Note that there is an issue with OpenDJ 4.0.0-SNAPSHOTS (nightly builds) and when you define a new Schema Provider, you need to restart the server to have it be effective.

Storing JSON objects in LDAP attributes…

jsonUntil recently, the only way to store a JSON object to an LDAP directory server, was to store it as string (either a Directory String i.e a sequence of UTF-8 characters, or an Octet String i.e. a blob of octets).

But now, in OpenDJ, the Open source LDAP Directory services in Java, there is now support for new syntaxes : one for JSON objects and one for JSON Query. Associated with the JSON query, a couple of matching rules, that can be easily customised and extended, have been defined.

To use the syntax and matching rules, you should first extend the LDAP schema with one or more new attributes, and use these attributes in object classes. For example :

dn: cn=schema
objectClass: top
objectClass: ldapSubentry
objectClass: subschema
attributeTypes: ( 1.3.6.1.4.1.36733.2.1.1.999 NAME 'json'
SYNTAX 1.3.6.1.4.1.36733.2.1.3.1 EQUALITY caseIgnoreJsonQueryMatch SINGLE-VALUE )
objectClasses: (1.3.6.1.4.1.36733.2.1.2.999 NAME 'jsonObject'
SUP top MUST (cn $ json ) )

Just copy the LDIF above into config/schema/95-json.ldif, and restart the OpenDJ server. Make sure you use your own OIDs when defining schema elements. The ones above are samples and should not be used in production.

Then, you can add entries in the OpenDJ directory server like this:

$ ldapmodify -a -D cn=directory\ manager -w secret12 -h localhost -p 1389

dn: cn=bjensen,ou=people,dc=example,dc=com
objectClass: top
objectClass: jsonObject
cn: bjensen
json: { "_id":"bjensen", "_rev":"123", "name": { "first": "Babs", "surname": "Jensen" }, "age": 25, "roles": [ "sales", "admin" ] }

dn: cn=scarter,ou=people,dc=example,dc=com
objectClass: top
objectClass: jsonObject
cn: scarter
json: { "_id":"scarter", "_rev":"456", "name": { "first": "Sam", "surname": "Carter" }, "age": 48, "roles": [ "manager", "eng" ] }

The very nice thing about the JSON syntax and matching rules, is that OpenDJ understands how the values of the json attribute are structured, and it becomes possible to make specific queries, using the JSON Query syntax.

Let’s search for all jsonObjects that have a json value with a specific _id :

$ ldapsearch -D cn=directory\ manager -w secret12 -h localhost -p 1389 -b "dc=example,dc=com" -s sub "(json=_id eq 'scarter')"

dn: cn=scarter,ou=people,dc=example,dc=com
objectClass: top
objectClass: jsonObject
json: { "_id":"scarter", "_rev":"456", "name": { "first": "Sam", "surname": "Carter" }, "age": 48, "roles": [ "manager", "eng" ] }
cn: scarter

We can run more complex queries, still using the JSON Query Syntax:

$ ldapsearch -D cn=directory\ manager -w secret12 -h localhost -p 1389 -b "dc=example,dc=com" -s sub "(json=name/first sw 'b' and age lt 30)"

dn: cn=bjensen,ou=people,dc=example,dc=com
objectClass: top
objectClass: jsonObject
json: { "_id":"bjensen", "_rev":"123", "name": { "first": "Babs", "surname": "Jensen" }, "age": 25, "roles": [ "sales", "admin" ] }
cn: bjensen

For a complete description of the query  filter expressions, please refer to ForgeRock Common  REST (CREST) Query Filter documentation.

The JSON matching rule supports indexing which can be enabled using dsconfig against the appropriate attribute index. By default all JSON fields of the attribute are indexed.

In a followup post, I will give more advanced configuration of the JSON Syntax, detail how to customise the matching rule to index only specific JSON fields, and will outline some best practices with the JSON syntax and attributes.

OpenDJ 3.0.0 has been released…

FR_plogo_org_FC_openDJ-300x86As part of the release of the ForgeRock Identity Platform that we did last week, we’ve released a major version of our Directory Services product : OpenDJ 3.0.0.

The main and most important change in OpenDJ 3.0 is the work on the backend layer, with the introduction of a new backend database, supported by a new low level key-value store. When installing a new instance of OpenDJ, administrators now have the choice of creating a JE Backend (which is based on Berkeley DB Java Edition, as with previous releases of OpenDJ), or a PDB Backend (which is based on the new PersistIt library). When upgrading, the existing local backends will be transparently upgraded in JE Backends, but indexes will need to be rebuilt (and can be rebuilt automatically during the upgrade process).

Both backends have the same capabilities, and very similar performances. Most importantly, both backends benefit from a number of improvements compared with previous releases : the size of databases and index records are smaller, some indexes have been reworked to deliver better performances both for updates and reads. Overall, we’ve been increasing the throughput of Adding/Deleting entries in OpenDJ by more than 15 %.

But the 2 backends are different, especially in the way they deal with database compression. Because of the way it’s dealing with journals and compression, the new PDB backend may deliver better overall throughput, but may increase its disk occupancy significantly under heavy load (it favours updates over compression). Once the throughput is reduced under a certain threshold, compression will be highly effective and the overall disk occupancy will be optimised.

A question I often get is “Which backend should I use? “. And I don’t have a definitive answer. If you have an OpenDJ instance and you’re upgrading to 3.0, keep the JE Backend. This is a simple and automated upgrade. If you’re installing a new instance of OpenDJ, then I would say it’s a matter of risks. We don’t have the same wide experience with the PDB backend than we have had with the JE backend over the last 10 years. So, if you want to be really safe, chose the JE Backend. If you have time to test, stage your directory service before putting it in production, you might want to go with the PDB Backend. As, moving forward, we will focus our performance testing and improvements on the PDB backend essentially.

That’s all for now. In a followup post, I will continue to review the changes in OpenDJ 3.0…

Meanwhile, you can download OpenDJ 3.0 from ForgeRock’s BackStage and start playing with it. And check the Release Notes for more information.

PS: The followup posts have been published:

New version of ForgeRock Identity Platform™

This week, we have announced the release of the new version of the ForgeRock Identity Platform, which brings new services in the following areas :

  • Continuous Security at Scale
  • Security for Internet of Things (IoT)
  • Enhanced Data Privacy Controls

FRPlatform

This is also the first identity management solution to fully implement the User-Managed Access (UMA) standard, making it possible for organizations to address expanding privacy regulations and establish trusted digital relationships. See the article that Eve Maler, VP of Innovation at ForgeRock and Chief UMAnitarian posted to explain UMA and what it can do for you.

A more in depth description of the new features of the ForgeRock Identity Platform has also been posted.

The ForgeRock Identity Platform is available for download now at https://www.forgerock.com/downloads/

In future posts, I will detail what is new in the Directory Services part, built on the OpenDJ project.